Java Unified Expression Language

UEL

lerda Unidved Expressson Language

Table of contents

BT L= Uato o g V=T o T L0 = I PPN 2
72 10 1 = U o 1= P 2
P R 1= wu] o [o IS] = = To F TP UP T UPPTUPTTRN 3
A S 1= 1 Lol O = 111 TP 3
2.2.1 EXPreSSION FACEOIY ... it e et e e e 3
A A V- Y [0 [T o o] =Y1=] (o] 1 PP 5
G B (= o g o T B =5 o] =11 o] o 1= PP 6
2 T | 3 1 =TT =P 7
2.3.0 SIMPIE CONEEXE. ettt et e e et e e e e en s 8
2.3.2 SIMPIE RESOIVET .. et e et e et e et et e e e et et e e e e e e eaas 8

B 8T 1o T 1 | PPN 9
RS Y AXe AV T g Tt =To IR o' 1ol PP 9
2.6 SPECITICALION ISSUBS. . uu ittt e e e r e e 12
0 T 10 1= o) = o S 14

I A o 1153 o] Yo 1 O g =T o T =S O P TP OPT PP 14

Java Unified Expression Language

1. Welcome to JUEL!

JUEL is an implementation of the Unified Expression Language (EL), specified as part of the JSP 2.1 standard
(JSR-245), which has been introduced in JEE5. Additionally, JUEL 2.2 implements the JSP 2.2 maintenance
release specification for full JEE6 compliance.

Motivation

Once, the EL started as part of JSTL. Then, the EL made its way into the JSP 2.0 standard. Now, though
part of JSP 2.1, the EL API has been separated into package javax.el and all dependencies to the core
JSP classes have been removed.

In other words: the EL is ready for use in non-JSP applications!

Features

JUEL provides a lightweight and efficient implementation of the Unified Expression Language.

High Performance - Parsing expressions is certainly the expected performance bottleneck. JUEL uses a
hand-coded parser which is up to 10 times faster than the previously used (javacc) generated parser!
Once built, expression trees are evaluated at highest speed.

Pluggable Cache - Even if JUELs parser is fast, parsing expressions is relative expensive. Therefore, it's
best to parse an expression string only once. JUEL provides a default caching mechanism which should
be sufficient in most cases. However, JUEL allows to plug in your own cache easily.

Small Footprint — JUEL has been carefully designed to minimize memory usage as well as code size.

Method Invocations — JUEL supports method invocations as in ${foo.matches('[0-9]+')}. Methods are
resolved and invoked using the EL's resolver mechanism. As of JUEL 2.2, method invocations are enabled
by default.

VarArg Calls - JUEL supports Java 5 VarArgs in function and method invocations. E.g., binding
String.format(String, String...) to function format allows for ${format('Hey %s','Joe')}. As of
JUEL 2.2, VarArgs are enabled by default.

Pluggable — JUEL can be configured to be transparently detected as EL implementation by a Java runtime
environment or JEE application server. Using JUEL does not require an application to explicitly reference
any of the JUEL specific implementation classes.

Status

JUEL is considered production stable. The code is well tested (80% coverage) and feature complete.

Availability

JUEL is licensed under the Apache License 2.0.

Requirements

JUEL requires Java 5 or later.

2. JUEL Guide

This guide gives a brief introduction to JUEL. However, this is not an EL tutorial. Before using JUEL,
we strongly recommend to get familiar with the Unified EL basics by taking a look at the specification
document, which is available here.

The JUEL guide divides into the following sections:

http://jcp.org/aboutJava/communityprocess/final/jsr245/
http://www.apache.org/licenses/LICENSE-2.0
http://jcp.org/aboutJava/communityprocess/final/jsr245/

Java Unified Expression Language

. Quickstart - Gets you started with JUEL.

. Basic Classes - Covers JUEL's expression factory and expression types.

. Utility Classes - Introduces JUEL's simple context and resolver implementations.
. Advanced Topics - Talks about trees, caching, builders, extensions, etc.

. Specification Issues - Known defects, clarifications, notes, ...

o b~ W N PR

2.1. Getting Started

The JUEL distribution contains the following JAR files:
1. juel-api-2.2.x.jar - contains the javax.el API classes.
2. juel-impl-2.2.x.jar - contains the de.odysseus.el implementation classes.

3. juel-spi-2.2.x.jar - contains the META-INF/service/javax.el.ExpressionFactory service provider
resource. (You will need this if you have several expression language implementations on your classpath
and want to force JUELs implementation to be chosen by ExpressionFactory.newInstance()).

Here's all you need to use the EL in your application (assuming you added the JUEL JAR files to your classpath
and did import javax.el.*):

1. Factory and Context
// the ExpressionFactory implementation is de.odysseus.el.ExpressionFactoryImpl
ExpressionFactory factory = new de.odysseus.el.ExpressionFactoryImpl();
// package de.odysseus.el.util provides a ready-to-use subclass of ELContext
de.odysseus.el.util.SimpleContext context = new de.odysseus.el.util.SimpleContext();
2. Functions and Variables
// map function math:max(int, int) to java.lang.Math.max(int, int)
context.setFunction("math", "max", Math.class.getMethod("max", int.class, int.class));
// map variable foo to 0
context.setVariable("foo", factory.createValueExpression(0, int.class));
3. Parse and Evaluate
// parse our expression
ValueExpression e = factory.createValueExpression(context, "${math:max(foo,bar)}", int.class);

// set value for top-level property "bar" to 1
factory.createValueExpression(context, "${bar}", int.class).setValue(context, 1);

// get value for our expression
System.out.println(e.getValue(context)); // --> 1

2.2. Basic Classes

This section walks through the concrete classes provided by JUEL, that make up the core of the evaluation
process: the factory and the various kinds of expressions it creates.

We do not fully cover inherited behavior, which is already described by the API super classes. Rather, we
focus on additional methods provided by JUEL as extensions to the APl as well as implementation specific
information.

2.2.1. Expression Factory

To start using the EL, you need an instance of javax.el.ExpressionFactory. The expression factory is
used to create expressions of various types.

Java Unified Expression Language

JUEL's expression factory implementation is de.odysseus.el.ExpressionFactoryImpl. The easiest way to
obtain an expression factory instance is

javax.el.ExpressionFactory factory = new de.odysseus.el.ExpressionFactoryImpl();

An expression factory is thread-safe and can create an unlimited number of expressions. The expression
factory provides operations to

e perform type coercions,

* create tree value expressions,

* create object value expressions,
* create tree method expressions.

Expression Cache

Each factory instance uses its own expression cache. Caching expressions can be an important issue,
because parsing is relative expensive. An expression cache maps expression strings to their parsed
representations (trees).

JUEL provides a caching interface which allows applications to use their own caching mechanism. However,
in most scenarios, JUEL's default implementation (based on java.util.concurrent.ConcurrentHashMap
and java.util.concurrent.ConcurrentLinkedQueue) should be fine.

The caching mechanism has been rewritten for JUEL 2.2.5 to improve performance.
The default constructor uses a maximum cache size of 1000. You may specify a different value - say 5000
- by specifying the javax.el.cacheSize property.

java.util.Properties properties = new java.util.Properties();
properties.put("javax.el.cacheSize", "5000");
javax.el.ExpressionFactory factory = new de.odysseus.el.ExpressionFactoryImpl(properties);

Using your own caching mechanism is covered in the Advanced Topics secion.

Type Conversions

Type conversions are performed at several points while evaluating expressions.

* Operands are coerced when performing arithmetic or logical operations

* Value expression results are coerced to the expected type specified at creation time

* For literal method expressions the text is coerced to the type specified at creation time

¢ For non-literal method expressions the last property is coerced to a method name

¢ Composite expression coerce their sub-expressions to strings before concatenating them

All these coercions are done following the same rules. The specification describes these coercion rules
in detail. It supports converting between string, character, boolean, enumeration and number types.
Additionally, the conversion of strings to other types is supported by the use of (Java Beans) property
editors. The EL makes the coercion rules available to client applications via the expression factory method

ExpressionFactoryImpl.coerceToType(Object, Class<?>)
whose return type is Object.
JUEL can be configured to use alternative coercion rules as described in the Advanced Topics secion.

Factory Configuration

Java Unified Expression Language

The factory may be configured via property files. The mechanism described here is used when an
expression factory is created without specifying properties. The lookup procedure for properties is as
follows:

1. JAVA HOME/lib/el.properties - If this file contains property javax.el.ExpressionFactory whose value
is de.odysseus.el.ExpressionFactoryImpl, its properties are loaded and taken as default properties.

2. System.getProperties() - if the previous rule (1) did not match and system property
javax.el.ExpressionFactory is set to de.odysseus.el.ExpressionFactoryImpl, the system properties
are taken as default properties.

3. el.properties anywhere on your classpath - These properties may override the default properties from
(1) or (2).

Having this, the following properties are read:
* javax.el.cacheSize - expression cache size (default is 1000)

* javax.el.methodInvocations - set to true to allow method invocations. Please refer to the Advanced
Topics section for more on this.

* javax.el.nullProperties - set to true to resolve null properties. Please refer to the Advanced Topics
section for more on this.

* javax.el.varArgs - set to true to allow vararg function/method calls in your expressions.

The factory class also provides constructors which let you explicitly pass your properties. If you just want
to switch between JEE5 and JEEG6 style, JUEL provides enum constants to use as profiles.

2.2.2. Value Expressions
Value expressions are expressions that are evaluated in the "classical sense". There are two kinds of value
expressions: those created by parsing an expression string and those simply wrapping an object.

A javax.el.ValueExpression is evaluated by calling its getValue(ELContext) method. Value
expressions can also be writable and provide methods isReadOnly (ELContext), getType(ELContext) and
setValue(ELContext, Object).

A value expression is called an /value expression if its expression string is an eval expression (#{...} or
${...}) consisting of a single identifier or a nonliteral prefix (function, identifier or nested expression),
followed by a sequence of property operators (. or []). All other value expressions are called non-lvalue
expressions.

For non-lvalue expressions

¢ getType(ELContext) method will always return null.

* 1isReadOnly(ELContext) method will always return true.

e setValue(ELContext, Object) method will always throw an exception.

Tree Value Expressions

Creating a tree value expression involves
1. parsing an expression string and building an abstract syntax tree,
2. binding functions and variables using the mappers provided by the context.

Once created, a tree value expression can be evaluated using the getValue (ELContext) method. The result
is automatically coerced to the expected type given at creation time.

Class de.odysseus.el.TreeValueExpression is a subclass of javax.el.ValueExpression, which is used by
JUEL to represent a value expression, that has been created from an expression string. It is the return
type of

ExpressionFactoryImpl.createValueExpression(ELContext, String, Class<?>)

Java Unified Expression Language

In addition to the methods available for javax.el.ValueExpression, it provides methods

* void dump(java.io.PrintWriter writer) — dump parse tree

* boolean isDeferred() - true if expression is deferred (contains eval expressions #{...})
* boolean isLeftValue() - true if expression is an lvalue expression.

import java.io.*;

import de.odysseus.el.*;
import de.odysseus.el.util.*;

ExpressionFactoryImpl factory = new ExpressionFactoryImpl();
SimpleContext context = new SimpleContext(); // more on this here...
TreeValueExpression e = factory.createValueExpression(context, "#{pi/2}", Object.class);
PrintWriter out = new PrintWriter(System.out);

e.dump(out);

// +- #{...}

// |

// +- /!

// |

// +- pi

// |

// +- 2

out.flush();

System.out.println(e.isDeferred()); // true
System.out.println(e.isLeftValue()); // false

Object Value Expressions

An object value expression simply wraps an object giving it an "expression facade". At the first place, object
expressions are used to define variables.

Once created, an object value expression can be evaluated using the getValue(ELContext) method, which
simply returns the wrapped object, coerced to the expected type provided at creation time.

Class de.odysseus.el.0ObjectValueExpression is a subclass of javax.el.ValueExpression, which is used
by JUEL to represent a value expression, that has been created from an object. It is the return type of

ExpressionFactoryImpl.createValueExpression(Object, Class<?>)
This class provides no extra methods to those available for javax.el.ValueExpression.

import java.io.*;
import de.odysseus.el.*;
import de.odysseus.el.util.*;

ExpressionFactoryImpl factory = new ExpressionFactoryImpl();

SimpleContext context = new SimpleContext(); // more on this here...
ObjectValueExpression e = factory.createValueExpression(Math.PI, Double.class);
context.setVariable("pi", e);

2.2.3. Method Expressions

Method expressions can be "invoked". A javax.el.MethodExpression is invoked by calling its
invoke(ELContext, 0Object<?>[]) method. The specification also allows to treat literal text as a method
expression.

A method expression is called a literal method expression if its underlying expression is literal text (that is,
isLiteralText () returns true). All other method expressions are called non-literal method expressions.
Non-literal method expressions share the same syntax as Ivalue expressions.

Java Unified Expression Language

For literal method expressions

e invoke(ELContext, Object<?>[]) simply returns the expression string, optionally coerced to the
expected return type specified at creation time.

e getMethodInfo(ELContext) always returns null.

On the other hand, non-literal method expressions refer to a java.lang.reflext.Method which can be
invoked or used to create a javax.el.MethodInfo instance. For non-literal method expressions

e invoke(ELContext, Object<?>[]) evaluates the expression to a java.lang.reflext.Method and
invokes that method, passing over the given actual parameters.

* the found method must match the expected return type (if it is not null) and the argument types given
at creation time; otherwise an exception is thrown.

Tree Method Expressions

Class de.odysseus.el.TreeMethodExpression is a subclass of javax.el.MethodExpression, which is used
by JUEL to represent method expressions. It is the return type of

ExpressionFactoryImpl.createMethodExpression(ELContext, String, Class<?>, Class<?>[])
In addition to the methods declared by javax.el.MethodExpression, it provides

* void dump(java.io.PrintWriter writer) - dump parse tree

* boolean isDeferred() - true if expression is deferred (contains eval expressions #{...})

import java.io.*;
import de.odysseus.el.*;
import de.odysseus.el.util.*;

ExpressionFactoryImpl factory = new ExpressionFactoryImpl();
SimpleContext context = new SimpleContext(); // more on this here...
TreeMethodExpression e =

factory.createMethodExpression(context, "#{x.toString}", String.class, new Class[]{});
PrintWriter out = new PrintWriter(System.out);
e.dump(out);

// +- #{...}

// |

// +- . toString
// |

// +- X

out.flush();
System.out.println(e.isDeferred()); // true

2.3. Utility Classes

When creating and evaluating expressions, some other important classes come into play: a
javax.el.ELContext is required at creation time and evaluation time. It contains methods to access
a function mapper (javax.el.FunctionMapper), a variable mapper (javax.el.VariableMapper) and a
resolver (javax.el.ELResolver).

* At creation time, the context's function mapper and variable mapper are used to bind function
invocations to static methods and identifiers (variables) to value expressions. The context's resolver is
not used at creation time.

* At evaluation time, the context's resolver is used for property resolutions and to resolve unbound
identifiers (top-level properties). The context's function mapper and variable mapper are not used at
evaluation time.

JUEL provides simple implementations of these classes to get you using the unified EL "out of the box".

Java Unified Expression Language

2.3.1. Simple Context

Class de.odysseus.el.util.SimpleContext is a simple context implementation. It can be used at creation
time as well as evaluation time.

For use at creation time, it provides the following methods.

e setFunction(String prefix, String name, java.lang.reflect.Method method) to define a method
as a function for the given prefix and name. Functions without a namespace must pass in the empty
string as prefix. The supplied method must be declared as public and static.

* setVariable(String name, javax.el.ValueExpression expression) to define a value expression as
a variable for the given name. (This is equivalent to getVariableMapper().setVariable(String name,
javax.el.ValueExpression expression).)

The following example defines function math:sin and variable pi and uses them in an expression.
import javax.el.*;

import de.odysseus.el.util.SimpleContext;
import de.odysseus.el.ExpressionFactoryImpl;

ExpressionFactory factory = new ExpressionFactoryImpl();

SimpleContext context = new SimpleContext();

context.setFunction("math", "sin", Math.class.getMethod("sin", double.class));
context.setVariable("pi", factory.createValueExpression(Math.PI, double.class));

ValueExpression expr = factory.createValueExpression(context, "${math:sin(pi/2)}", double.class);
System.out.println("math:sin(pi/2) = " + expr.getValue(context)); // 1.0

At evaluation time, a javax.el.ELResolver is required for property resolution and to resolve identifiers,
that have not been bound to a variable. The getELResolver() method is used at evaluation time to access
the context's resolver instance.

A resolver may be passed to a SimpleContext at construction time. If the default constructor is used, calling
getELResolver() will lazily create an instance of de.odysseus.el.util.SimpleResolver.

2.3.2. Simple Resolver

JUEL provides the de.odysseus.el.util.SimpleResolver class for use as a simple resolver, suitable to
resolve top-level identifiers and to delegate to another resolver provided at construction time.

If no resolver delegate is supplied, a composite resolver will be used as default, capable of resolving bean
properties, array values, list values, resource values and map values.

A resolver is made to resolve properties. It operates on a pair of objects, called base and property. JUEL's
simple resolver maintains a map to directly resolve top-level properties, that is base == null. Resolution
for base/property pairs with base != null is delegated.

Finally, a simple resolver may also be flagged as "read-only". In this case, invoking the
setValue(ELContext, Object, Object, Object) method will throw an exception.

import java.util.Date;

import javax.el.*;

import de.odysseus.el.util.SimpleContext;
import de.odysseus.el.util.SimpleResolver;
import de.odysseus.el.ExpressionFactoryImpl;

ExpressionFactory factory = new ExpressionFactoryImpl();
SimpleContext context = new SimpleContext(new SimpleResolver());

// resolve top-level property

factory.createValueExpression(context, "#{pil}", double.class).setValue(context, Math.PI);
ValueExpression exprl = factory.createValueExpression(context, "${pi/2}", double.class);
System.out.println("pi/2 = " + exprl.getValue(context)); // 1.5707963...

Java Unified Expression Language

// resolve bean property
factory.createValueExpression(context, "#{current}", Date.class).setValue(context, new Date());
ValueExpression expr2 = factory.createValueExpression(context, "${current.time}", long.class);

System.out.println("current.time = + expr2.getValue(context));

2.4. Plugin JUEL

A recent addition to javax.el.ExpressionFactory have been the static methods newInstance() and
newInstance(java.util.Properties).

With these methods, selection of a particular EL implementation is completely transparent to the
application code. E.g., the first line of our Quickstart example could be rewritten as

ExpressionFactory factory = ExpressionFactory.newInstance();

Either of the new methods will determine a factory implementation class and create an instance of
it. The first variant will use its default constructor. The latter will use a constructor taking a single
java.util.Properties object as parameter. The lookup procedure uses the Service Provider APl as detailed
in the JAR specification.

The juel-spi-2.2.x.jar does the trick: if on your classpath, the lookup procedure will detect
de.odysseus.el.ExpressionFactoryImpl as service provider class.

This way, JUEL can be used without code references to any of its implementation specific classes. Just
javax.el.*...

The new API is part of the EL since version 2.2 (JEE6). Therefore, it may not be supported in environments
which are based on EL 2.1 (JEE5).

Depending on your application's scenario, there may be several ways to register JUEL as default EL
implementation.

* Place the JUEL JARs into directory JRE HOME/lib/ext. This will make JUEL available globally for all
applications running in that environment.

* You may simply drop juel-impl-2.2.x.jar and juel-spi-2.2.x.jar into your /WEB-INF/1lib directory.
This will result in using JUEL as EL implementation for that particular web application.

e Of course you can also add the jar files to your classpath manually.

Please refer to the section on Factory Configuration on how to configure an expression factory via property
files.

2.5. Advanced Topics

This section covers some advanced JUEL topics.

Expression Trees

An expression tree refers to the parsed representation of an expression string. The basic classes and
interfaces related to expression trees are contained in package de.odysseus.el.tree. We won't cover all
the tree related classes here. Rather, we focus on the classes that can be used to provide a customized
tree cache and builder.

1. Tree - This class represents a parsed expression string.

2. TreeBuilder - General interface containing a single build(String) method. A tree builder must be
thread safe. The default implementation is de.odysseus.el.tree.impl.Builder.

3. TreeCache - General interface containing methods get(String) and put(String, Tree). A tree cache
must be thread safe, too. The default implementation is de.odysseus.el.tree.impl.Cache.

4. TreeStore - This class just combines a builder and a cache and contains a single get(String) method.

9

Java Unified Expression Language

The expression factory uses its tree store to create tree expressions. The factory class provides a
constructor which takes a tree store as an argument.

Using a customized Builder

It should be noted that one could write a builder by implementing the de.odysseus.el.tree.TreeBuilder
interface from scratch. However, you may also want to subclass the Builder class and override the
createParser() to work with a modified parser implementation.

Either way, the new tree builder can be passed to a factory via

TreeStore store = new TreeStore(new MyBuilder(), new Cache(100));
ExpressionFactory factory = new ExpressionFactoryImpl(store);

As an alternative, you may set property
de.odysseus.el.tree.TreeBuilder
to the fully qualified class name of your builder implementation.

Enabling/Disabling Method Invocations

Many people have noticed the lack of method invocations as a major weakness of the unified expression
language. When talking about method invocations, we mean expressions like ${foo.matches('[0-9]+"')}
that aren't supported by the 2.1 standard. However, method invocations have been added in maintenance
release 2 of JSR 245, which is supported by JUEL.

JUEL's proprietary API for method invocations has been removed in version 2.2. |

To enable (disable) expressions using method invocations, you may set property
javax.el.methodInvocations

to true (false).

Method invocations are enabled in profile JEE6 (default) and disabled in JEE5.

Enabling/Disabling VarArgs

The EL specification does not support function calls with variable argument lists. That is, if we
bind String.format(String, Object...) to function str:format, the expression ${str:format('Hey
%s','Joe')} will not work.

To enable (disable) VarArgs in function and method invocations, you may set property
javax.el.varArgs

to true (false).

VarArg invocations are enabled in profile JEE6 (default) and disabled in JEES5.

Enabling/Disabling null Properties

The EL specification describes the evaluation semantics of base[property]. If property is null, the
specification states not to resolve null on base. Rather, null should be returned if getValue(...) has
been called and a PropertyNotFoundException should be thrown else. As a consequence, it is impossible
to resolve null as a key in a map. However, JUEL's expression factory may be configured to resolve null
like any other property value.

To enable (disable) null as an EL property value, you may set property
javax.el.nullProperties

to true (false).

10

Java Unified Expression Language

Assume that identifier map resolves to a java.util.Map.

e |If feature javax.el.nullProperties has been disabled, evaluating ${base[null]} as an rvalue (lvalue)
will return null (throw an exception).

e If feature javax.el.nullProperties has been enabled, evaluating ${base[null]} as an rvalue (lvalue)
will get (put) the value for key null in that map.

The default is not to allow null as an EL property value.

Enabling/Disabling ignoring of expected return type

The EL specification allows to determine an expected return type for method expressions. The return
type should then be checked to match the actual return type of the method to invoke. Unfortunately, the
EL reference implementation ignores this parameter completely. This caused some "legacy" code to not
recognize that they're passing wrong types. When switching to JUEL as their EL implementation, this causes
an exception to be thrown.

For compatibility, JUEL lets you choose to ignore the expected return type passed to
EpressionFactory.createMethodExpression() when looking up a method to invoke. (This option has no
effect when evaluating literal method expressions, where the expected return type acts as coercion target

type.)

To enable (disable) ignoring of the expected return type parameter, you may set property
javax.el.ignoreReturnType

to true (false).

The default is respect (i.e. not to ignore) the expected return type parameter.

Using a customized Cache

The default Iru cache implementation can be customized by specifying a maximum cache size. However,
it might be desired to use a different caching mechanism. Doing this means to provide a class that
implements the TreeCache interface.

Now, having a new cache implementatation, it can be passed to a factoy via

TreeStore store = new TreeStore(new Builder(), new MyCache());
ExpressionFactory factory = new ExpressionFactoryImpl(store);

Tree Expressions

In the basics section, we already presented the TreeValueExpression and TreeMethodExpression classes,
which are used to represent parsed expressions.

Equality

As for all objects, the equals(0Object) method is used to test for equality. The specification notes that two
expressions of the same type are equal if and only if they have an identical parsed representation.

This makes clear, that the expression string cannot serve as a sufficient condition for equality testing.
Consider expression string ${foo}. When creating tree expressions from that string using different variable
mappings for foo, these expressions must not be considered equal. Similar, an expression string using
function invocations may be used to create tree expressions with different function mappings. Even worse,
${foo()} and ${bar()} may be equal if foo and bar referred to the same method at creation time.

To handle these requirements, JUEL separates the variable and function bindings from the pure parse tree.
The tree only depends on the expression string and can therefore be reused by all expressions created from
a string. The bindings are then created from the tree, variable mapper and function mapper. Together, the
tree and bindings form the core of a tree expression.

11

Java Unified Expression Language

When comparing tree expressions, the trees are structurally compared, ignoring the names of functions
and variables. Instead, the corresponding methods and value expressions bound to them are compared.

Serialization

As required by the specification, all expressions have to be serializable. When serializing a tree expression,
the expression string is serialized, not the tree. On deserialization, the tree is rebuilt from the expression
string.

Customizing Type Conversions

The rules to apply when coercing objects is described in the specification. However, in a non-JEE
environment, it might be desired to apply application-specific or additional type conversions. To do this,
you must provide JUEL's expression factory with an implementation of

de.odysseus.el.misc.TypeConverter
which defines a single method:
public <T> T convert(Object value, Class<T> type) throws ELException

The default converter is implemented in de.odysseus.el.misc.TypeConverterImpl. To use your new type
converter, pass an instance of it to the factory constructor

ExpressionFactoryImpl(TreeStore store, TypeConverter converter)

As an alternative, you may set property

de.odysseus.el.misc.TypeConverter

to the fully qualified name of your converter class (requires your class to provide a default constructor).

The BeanELResolver.invoke(...) method needs type conversions to convert actual method parameters
to the method's formal parameter types. Unfortunately, the resolver APl doesn't provide access the an
ExpressionFactory to use our customized conversions via ExpressionFactory.coerceToType(...).JUEL's
bean resolver implementation consults the javax.el.ExpressionFactory context property to get a factory
before creating a default using ExpressionFactory.getInstance(). That is, if you're using JUEL's EL API,
you may do

elContext.putContext(javax.el.ExpressionFactory.class, factory)

to make your customized type conversions available to the resolver.

2.6. Specification Issues

JUEL tries to be as close as possible to the EL specification. However, the spec isn't always clear, leaves
some details open and sometimes even seems to be incorrect. For these certain gaps, JUEL had to make
decisions that could not be derived from the specification. We still hope that the specification could be
updated to make things more clear. Until then, we will have this section to list the specification issues.

1. In section 1.19, "Collected Syntax", the specification defines Nonterminal LValueInner (which describes
an lvalue expression) as

LValueInner ::= Identifier | NonLiteralValuePrefix (ValueSuffix)*

This would mean - since NonLiteralValuePrefix can be expanded to a nested expression or function
invocation -that ${(1) } or ${foo ()} were Ivalue expressions. JUEL considers this to be a bug and guesses
that the above should read as

LValueInner ::= Identifier | NonLiteralValuePrefix (ValueSuffix)+
instead.

2. In section 1.2.3, "Literal Expressions", the specification states that "the escape characters \$ and \# can
be used to escape what would otherwise be treated as an eval-expression". The specification doesn't

12

Java Unified Expression Language

tell usif '\'' is used to escape other characters in literal expressions, too. Consequently, JUEL treats '\'
as escape character only when immediately followed by '${' and '#{".

Expression \\${ evaluates to '\${', whereas \$ evaluates to '\$' and \\ evaluates to '\\".

. In section 1.3, "Literals", the specification states that "Quotes only need to be escaped in a string value
enclosed in the same type of quote". This suggests that, e.g., "You could escape a single quote in a
double-quoted string, but it's not necessary". JUEL guesses that you can't and that the above should
read as "Quotes can only be escaped in a string value enclosed in the same type of quote".

The '\' in expression ${'\" '} doesn't escape the double quote.

. From section 1.2.1.2, "Eval-expressions as method expressions", it is clear that a single identifier
expression, e.g. ${foo}, can be used as a method expression. However, the specification doesn't tell how
to evaluate such a method expression! Unfortunately, there's no obvious guess, here... JUEL evaluates
method expression ${foo} as follows (let paramTypes be the supplied expected method parameter types,
returnType the expected return type):

¢ Evaluate ${foo} as a value expression

* If the result is an instance of java.lang.reflect.Method
¢ if the method is not static, then error.

* if the method's parameter types do not match the paramTypes, then error.
e if returnType is not null and the method's return type does not match returnType, then error.

e If MethodExpression.invoke(...) was called, invoke the found method with the parameters
passed to the invoke method.

e |f MethodExpression.getMethodInfo(...) was called, construct and return a new MethodInfo
object.

e JUEL 2.2.6 and later: If the result is an instance of javax.el.MethodExpression
¢ |f MethodExpression.invoke(...) was called, delegate to invoke(...) on the found method
expression.

e |If MethodExpression.getMethodInfo(...) was called, delegate to getMethodInfo(...) on the
found method expression.

e Otherwise, error

. Section 1.6, "Operators [] and .", describes the semantics of base[property]. If property is null, the
speciification states not to resolve null on base. Rather, null should be returned if getValue(...) has
been called and a PropertyNotFoundException should be thrown else. As a consequence, it would not
be possible to resolve null as a key in a map. We think that this restriction is not really wanted and
more generally, that property == null should not even have been treated as a special case. We have
made an enhancement request, hoping that this will be changed in the future. Because this has been
explicitly stated in the spec, we had to implement it this way. However, JUEL's builder supports a feature
NULL PROPERTIES to let you resolve null like any other property value.

Assume that map resolves to a java.util.Map. Further assume that feature NULL PROPERTIES is enabled.
Evaluating ${base[null]} as an rvalue (lvalue) will get (put) the value for key null in that map.

. Section 1.19, "Collected Syntax" defines Nonterminal IntegerLiteral to be an unsigned integer
constant. Then it is said that "The value of an IntegerLiteral ranges from Long.MIN VALUE to
Long.MAX VALUE". We take that as a hint that the spec wants us to parse integer literals into Long values.
However, the positive number |Long.MIN VALUE| cannot be stored in a Long since Long.MAX VALUE
= |Long.MIN VALUE| - 1. We think that the specification should have said that "The value of an

13

Java Unified Expression Language

IntegerLiteral ranges from 0 to Long.MAX VALUE". Consequently, JUEL rejects |Long.MIN VALUE| =
9223372036854775808 as an illegal integer literal.

7. Section 1.19, "Collected Syntax" defines Nonterminal FloatingFointLiteral to be an unsigned floating
point constant. Then it is said that "The value of a FloatingPointLiteral ranges from Double.MIN VALUE
to Double.MAX VALUE". We take that as a hint that the spec wants us to parse floating point literals
into Double values. However, since Double.MIN VALUE is the smallest positive value that can be stored
in a Double, this would exclude zero from the range of valid floating point constants! We think
that the specification should have said that "The value of a FloatingPointLiteral ranges from 0 to
Double.MAX VALUE". Consequently, JUEL accepts 0.0 as a legal floating point literal.

3. JUEL Project
3.1. History of Changes

Version 2.2.7 (2014/02/06)

developer: cbe type: update fixes: 73

updated method invocation code to use Method.setAccessible() only if hecessary.
developer: cbe context: build type: add fixes: 79

Catch SecurityException when accessing default el.properties.

Version 2.2.6 (2013/01/11)

developer: cbhe type: update thanks to: Oleg Varaksin, Arjan Tijms. fixes: 71

For a single identifier method expression, if the identifier evaluates to another method expression,
invoke that method expression. (The semantics for this case is not covered in the specification. See
also this issue. This change was made to improve compatibility with other EL implementations.)

developer: cbe context: build type: add thanks to: Adam Crume.

Added OSGi bundle manifest entries for juel-api and juel-impl and declared
de.odysseus.el.ExpressionFactoryImpl as an OSGi service.

Version 2.2.5 (2012/07/08)

developer: cbe context: build type: update thanks to: Oleg Varaksin. fixes: 3521406

Changed scope for dependency from juel-impl to juel-api to provided. Therefore, to include juel-
api, users now need to explicitly add it as a dependency.

developer: cbe context: code type: update

Re-implemented Cache based on ConcurrentHashMap and ConcurrentLinkedQueue to improve
performance in multi-threaded environments.

developer: cbe context: code type: update thanks to: Martin Koci. fixes: 3529970
Determine target type and coerce argument in ExpressionNode.setValue().

developer: cbe context: code type: fix thanks to: Martin Koci. fixes: 834616

Catch and re-throw IllegalArgumentException as ELException in BeanELResolver.setValue().
developer: cbe context: code type: update

Updated messages with keys error.coerce.type and error.coerce.value to include value that could
not be coerced.

developer: cbe context: code type: update

14

http://java.net/jira/browse/EL_SPEC-11

Java Unified Expression Language

Create HashMap in ELContext lazily.

developer: cbe context: code type: update

BeanELResolver now caches property access methods.

developer: cbe context: code type: fix fixes: 3420591

ELContext.getContext(key) and putContext(key, value) should throw NPE if key is null

Version 2.2.4 (2011/09/30)

developer: cbe context: code type: add

Added property javax.el.ignoreReturnType to ignore the expected return type passed to
EpressionFactory.createMethodExpression() when looking up a method to invoke. (This option has
no effect when evaluating literal method expressions, where the expected return type acts as coercion
target type.)

Version 2.2.3 (2011/01/30)

developer: cbe context: code type: update thanks to: Martin Koci. fixes: 3154206

fixed: a method invocation node invoked via ValueExpression.getValue(...) should return null if its
base (prefix) expression evaluates to null.

developer: cbe context: build type: update
Moved parent pom.xml from modules to project root to simplify maven release build.

Version 2.2.2 (2010/11/12)

developer: cbe context: build type: update
Updated POMs to sync JUEL releases to maven central via Sonatype's repository hosting service.
developer: cbe context: code type: update fixes: 3104608

fixed: MethodExpression.invoke(...) should ignore passed parameter types if arguments are
specified in the expression as in ${foo.bar(123)}.

developer: cbe context: code type: update fixes: 3095122

Improved method lookup in method expressions (when calling MethodExpression.invoke(...),
Method.setAccessible(true) is used if necessary).

developer: cbe context: code type: update

Changed implementation of ASTProperty.getValueReference() to throw an exception if base
expression evaluates to null. Updated documentation of ValueExpression.getValueReference()
accordingly.

Version 2.2.1 (2009/12/13)

developer: cbe context: code type: add

Added MethodExpression.isParametersProvided (). This method was added silently to the API (wasn't
mentioned anywhere prior to the final release of EE6) and forces this release...

developer: cbe context: build type: update

Added OSGi attributes to manifest files of juel-api-2.2.x.jar, juel-impl-2.2.x.jar and juel-
spi-2.2.x.jar. E.g. the latter two can now be added as OSGi modules to glassfish v3.

developer: cbe context: code type: add
Added SimpleResolver.setELResolver(ELResolver).

15

Java Unified Expression Language

developer: cbe context: code type: update

Removed static field BeanELResolver.DEFAULT FACTORY. Lazily get a factory for type conversions when
needed to coerce method parameters instead.

Version 2.2.0 (2009/12/01)

developer: cbe context: code type: update

Improved implementation of type conversions in de.odysseus.el.misc.TypeConverterImpl.
developer: cbe context: code type: add

Added some more unit tests.

Version 2.2.0-rc3 (2009/11/08)

developer: cbe context: code type: update

If no properties are available in JUEL's expression factory (neither passed in nor from el.properties),
use system properties if System.getProperty("javax.el.ExpressionFactory") points to JUEL.

developer: cbe context: admin type: update

Split code base into modules modules/api, modules/impl and modules/spi; added maven build for
these.

developer: cbe context: build type: add

Separated the JAR service provider (META-INF/services/javax.el.ExpressionFactory) into its own
juel-spi-2.2.x.jar. This allows to have juel-impl-2.2.x.jar on your classpath without forcing JUEL
to be used by ExpressionFactory.newInstance().

developer: cbe context: code type: add

Added ExpressionFactoryImpl.Profile enum type and several new constructors to easily choose
between JEE5 and JEE6 (default) behavior.

developer: cbe context: docs type: update
Updated documentation for 2.2.

Version 2.1.3/2.2.0-rc2 (2009/10/09)

developer: cbe context: code type: add

Added ExpressionFactoryImpl(TreeStore store, TypeConverter converter) constructor.
developer: cbe context: code type: fix thanks to: Pavel Vojtechovsky. fixes: 2871773
Fixed: ListELResolver.getValue(...) should return null when index is out of range.
developer: cbe context: code type: fix thanks to: Pavel Vojtechovsky. fixes: 2871795
Fixed: second operand is always evaluated in and/or operations (e.g. ${true or false}).
developer: cbe context: code type: fix fixes: 2822943

Fixed: BeanELResolver should use Method.setAccessible(true).

developer: cbe context: docs type: update

Updated copyright notes.

Version 2.2.0-rcl1l (2009/08/09)

developer: cbe context: code type: add

16

Java Unified Expression Language

Implemented changes from JSR 245, maintenance release 2. This replaces JUELs proprietary API for
method invocations. The BeanELResolver class now provides a generic default for method invocations
using reflection. Method invocations are disabled/enabled via the javax.el.methodInvocations
property.

Version 2.1.2 (2009/04/26)

developer: cbe context: code type: fix thanks to: Gerhard Petracek. fixes: 2748538

Fixed: for a single identifier expression ${foo}, ValueExpression.setValue(...) always calls
ELContext.setValue(...), even if foo is bound to a variable.

developer: cbe context: build type: update

Renamed API/impl jars to juel-api-<version>.jar and juel-impl-<version>.jar to reflect maven
artifact names juel-api and juel-impl.

Version 2.1.1 (2009/03/21)

developer: cbe context: code type: add

Added support for bracket operator in method invocations (e.g. ${foo[bar] (baz)}).
developer: cbe context: code type: add

Added implementation of javax.el api classes.

developer: cbe context: build type: update thanks to: Wolfgang Hafelinger.

Updated pom.xml to package the following jar files: juel-<version>.jar, juel-<version>-api.jar and
juel-<version>-impl.jar.

developer: cbe context: code type: fix thanks to: Adam Winer. fixes: 2590830
Fixed: SimpleContext.getVariableMapper() returns null

developer: cbe context: code type: add

Experimental support for syntax extensions.

developer: cbe context: build type: update

Reorganized project structure to meet maven's standard layout.

developer: cbe context: code type: update

Improved method invocation support by passing de.odysseus.el.misc.MethodInvocation as property
to ELResolver.getValue(..., Object property).

developer: cbe context: code type: add

Added support for varargs.

developer: cbe context: code type: add

Introduce TypeConverter to allow for customized coercion rules.
developer: cbe context: code type: remove

Removed old TypeConversions (use TypeConverter.DEFAULT).
developer: cbe context: docs type: update

Update to fop-0.95-beta and forrester-0.3.3.

developer: cbe context: admin type: update

Moved to SVN.

Version 2.1.0 (2007/03/06)

17

Java Unified Expression Language

developer: cbe context: code type: update

Use StringBuilder instead of StringBuffer (performance).
developer: cbe context: code type: update

Update API sources from glassfish.

Version 2.1.0-rc3 (2006/10/20)

developer: cbe context: code type: fix thanks to: Frédéric Esnault.
ListELResolver was missing in SimpleResolver's default chain of resolver delegates.
developer: cbe context: code type: update

Update API sources from glassfish.

developer: cbe context: code type: update

Minor performance improvements in type conversions and number operations.

Version 2.1.0-rc2 (2006/10/06)

developer: cbe context: code type: update

Relaxed matching of return type for nonliteral MethodExpression's. The actual method return type is
checked be assignable to the expression's expected return type.

developer: cbe context: code type: add
Let ExpressionFactory's default constructor read properties from el.properties.
developer: cbe context: admin type: update

Updated APl classes to include new APl methods ExpressionFactory.newInstance() and
ExpressionFactory.newInstance(java.util.Properties).

developer: cbe context: build type: add

Package Jars with META-INF/services/javax.el.ExpressionFactory to register JUEL as EL service
provider.

developer: cbe context: code type: add

Added Builder.Feature.NULL PROPERTIES to resolve ${map[null]}.
developer: cbe context: code type: update

Generified TypeConversions.coerceToEnum(...) and TypeConversions.coerceToEnum(...).
developer: cbe context: code type: fix

Coerce null function parameters whose type is primitive.
developer: cbe context: code type: update

Minor scanner cleanup.

developer: cbe context: code type: update

Increased default cache size to 1000.

developer: cbe context: code type: update

ExpressionFactoryImpl no longer final to allow customization by subclassing. E.g. using JUEL with
JSF requires calling a default constructor.

Version 2.1.0-rcl1 (2006/07/18)

developer: cbe context: code type: add
Added support for method invocations as in ${foo.bar (1)} (disabled by default).

18

Java Unified Expression Language

developer: cbe context: code type: fix

Reject identifier instanceof.

developer: cbe context: docs type: add

Added "Advanced Topics" section.

developer: cbe context: code type: remove

Removed support for system property de.odysseus.el.factory.builder.
developer: cbe context: design type: update

Moved default tree cache implementation to package de.odysseus.el.tree.impl.
developer: cbe context: design type: update

Moved node implementation classes to package de.odysseus.el.tree.impl.ast.
developer: cbe context: code type: remove

Removed deprecated methods from SimpleResolver.

developer: cbe context: code type: update

Do not coerce null function parameters.

developer: cbe context: code type: update

Minor improvemnents in BooleanOperations and TypeConversions.

developer: cbe context: code type: update

Replaced JFlex scanner by handcoded scanner.

developer: cbe context: code type: update

Lazy initialize parser's lookahead token list.

Version 2.1.0-b2 (2006/07/01)

developer: cbe context: docs type: add

Added specification issues on number literals.

developer: cbe context: code type: remove

Finally removed the old JavaCC parser.

developer: cbe context: docs type: add

Added some more Javadocs.

developer: cbe context: code type: fix

Avoid NumberFormatException when parsing integer/floating point literals.
developer: cbe context: code type: remove

Removed staticTreeBuilder.DEFAULT constant.

developer: cbe context: code type: fix

Take builder and expected type into account when comparing tree expressions.

Version 2.1.0-b1 (2006/06/18)

developer: cbe context: docs type: add
Added documentation (HTML and PDF).
developer: cbe context: code type: add
Added TreeValueExpression.isLeftValue().

19

Java Unified Expression Language

developer: cbe context: code type: remove

Removed ExpressionNode.isLiteralValue().

developer: cbe context: build type: add

Added more jar manifest attributes.

developer: cbe context: build type: update

Let javac include line and source debug information.

developer: cbe context: code type: add

Added secondary cache (WeakHashMap) to TreeCache.Default.
developer: cbe context: code type: update

Lazy initialize SimpleContext.ELResolver.

developer: cbe context: code type: add

Configure default builder class via system property de.odysseus.el.factory.builder.
developer: cbe context: code type: update

Added @Override annotations.

developer: cbe context: code type: add

Added SAX XML filter sample.

developer: cbe context: code type: update

Simplified SimpleResolver (now only handles top-level properties) .
developer: cbe context: code type: update

Deprecated SimpleContext.setValue(...) and SimpleContext.setFunctions(...). These methods
will be removed in 2.1.0.

developer: cbe context: code type: update
Lots of minor refactorings.

Version 2.1.0-a3 (2006/06/04)

developer: cbe context: code type: fix

Re-throw NumberFormatException in number coercion as ELException.
developer: cbe context: code type: fix

Expected type now mandatory for value expressions.

developer: cbe context: docs type: add

Added SourceForge logo to JUEL home page.

developer: cbe context: code type: add

Added a calculator sample.

developer: cbe context: code type: update

Now use a new hand crafted top-down parser and a JFlex generated scanner. This almost doubles
parsing performance!

developer: cbe context: code type: update

Moved the Javacc parser to package de.odysseus.el.tree.impl. javacc. By default, it is excluded from
the JUEL jar file.

Version 2.1.0-a2 (2006/06/01)

20

Java Unified Expression Language

developer: cbe context: code type: update

Include EL api sources from glassfish now (the tomcat6 code was too buggy). The sources are available
under Sun's CDDL and are redistributed here. Also added a note on that in the README.txt file.

developer: cbe context: code type: update

Use pure Javacc parser. We no longer use the JJTree preprocessor. The AST classes are now Javacc
independent and could easily be reused with other parser generators.

developer: cbe context: code type: update
Improved unit tests

developer: cbe context: docs type: add
Added some documentation

developer: cbe context: code type: update
Improved parse exception formatting

Version 2.1.0-al (2006/05/13)

developer: cbe context: admin type: add
Initial Release

21

	JUEL
	1 Intro
	2 Guide
	2.1 Quickstart
	2.2 Basic Classes
	2.2.1 Expression Factory
	2.2.2 Value Expressions
	2.2.3 Method Expressions

	2.3 Utility Classes
	2.3.1 Simple Context
	2.3.2 Simple Resolver

	2.4 Plugin JUEL
	2.5 Advanced Topics
	2.6 Specification Issues

	3 Project
	3.1 History of Changes

